Jump to content

Leaderboard


Popular Content

Showing content with the highest reputation since 01/12/2019 in all areas

  1. 1 point
    Hi Bhargav, In the 1685-2014 version, component wire ports can be multidimensional, i.e., it can have muliple arrays and multiple vectors. For this reason, a portReference must support multiple dimensions as well. This is done using the partSelect element. The partSelect element can contain a single range with left and right to support a single vector as before. Or it can contain can indices plus a range. The indices indicate which dimension the range applies to. If the indices contain more than one index then the first indices apply to the arrays and the last indices apply to the vectors. Best regards, Erwin
  2. 1 point
    BEGIN_REQ/END_REQ and BEGIN_RESP/END_RESP mark time points in the protocol. So in the stanndard implementation you have 2 phases: request and response. Depending on the type of access various data is been transferred: for a read REQ usually carries the addr while RESP carries the data and status while during a write REQ carries addess and data while RESP just carries the status. It is up to the initiator and target to care for consistency of the data in the payload, in most implementations I''ve seen the data is sampled/set at the BEGIN_* time point. Best regards
  3. 1 point
    SystemC has no special concept similar to SystemVerilog interfaces. Instead you can use regular SystemC modules to work as SystemVerilog interfaces. SystemC has it's own notion of interface that is similar to interface notion in object-oriented programming: interface is basically a set of pure virtual functions. So for example you can define a simple memory interface as a set of mem_read and mem_write functions. SystemC requires that interfaces inherit virtually from sc_interface: struct memory_if : virtual sc_interface { virtual uint32_t mem_read( uint32_t address) = 0; // reads data from memory at given address virtual void mem_write( uint32_t address, uint32_t data) = 0; // writes data to memory at given address }; Next you can define a module that implements and exports this interface. For example: struct memory_module : sc_module, memory_if { sc_export<memory_if> mem_export{"mem_export"}; SC_CTOR(memory_module) { mem_export.bind(*this); } private: std::array<uint32_t , 1024> mem; uint32_t mem_read(uint32_t address) override { return mem.at(address >> 2); } void mem_write(uint32_t address, uint32_t data) override { mem.at(address >> 2) = data; } }; You can have other modules implementing memory_if. For example you can write a module that translates mem_read and mem_write function calls into a cycle-accurate signal-level memory protocol. And this is what SystemVerilog interfaces often do. Now the closest analog to SystemVerilog virtual interface is SystemC sc_port. For example you can define a test_module that has a sc_port<memory_if> and sends memory reads and writes using this port: struct test_module : sc_module { sc_port<memory_if> mem_port{"mem_port"}; SC_CTOR(test_module) { SC_THREAD(test_thread); } private: void test_thread() { cout << " test_thread \n"; const int TEST_SIZE = 10; for (int i = 0; i < TEST_SIZE; ++i) { cout << hex << "Write mem[" << i * 4 << "] = " << i << "\n"; mem_port->mem_write(i*4, i); } for (int i = 0; i < TEST_SIZE; ++i) { cout << hex << "Read mem[" << i * 4 << "] == " << mem_port->mem_read( i * 4 ) << "\n"; } } }; To create a simulation you instantiate both memory_module and test_module and bind port to export: int sc_main (int argc, char **argv) { test_module tmod{"tmod"}; memory_module mmod{"mmod"}; tmod.mem_port.bind(mmod.mem_export); sc_start(); return 0; }
  4. 1 point
    dynamic_cast to sc_module* would only give you access to methods of sc_module that were overridden in A. fun() and function() are not part of sc_module.
  5. 1 point
    Read up on sc_spawn and sc_process_handle. Basically, you can do something like: // Example of fork-join any std::vector<sc_process_handle> process_handles; process_handles.push_back( sc_spawn( [&](){ ... } ); //< repeat as needed ... sc_event_or_list terminated_events; for( auto& ph : process_handles ) { terminated_events |= ph.terminated_event(); } wait( terminated_events ); //< wait for any process to exit for( auto& ph : process_handles ) { ph.kill(); } // Example of fork-join none (void)spawn( [&](){ ... } ); //< repeat as needed ...
  6. 1 point
    Eyck

    TLM transaction tracing

    Maybe a little bit late but there are socket implementations available which do trace tlm transactions int a SCV database. They can be found at https://github.com/Minres/SystemC-Components/tree/master/incl/scv4tlm and are used e.g. at https://github.com/Minres/SystemC-Components/blob/5f7387ab7e3dfc2ff6a7cac6fbe834ed7ec8ae36/incl/sysc/tlmtarget.h which in turn serve as building blocks in https://github.com/Minres/SystemC-Components-Test/tree/master/examples/simple_system The setup given by Kai is put into sysc::tracer where all the tracing setup (VCD & SCV) is impelemted. Best regards -Eyck
×